资源类型

期刊论文 122

会议视频 2

年份

2024 1

2023 7

2022 10

2021 16

2020 3

2019 3

2018 11

2017 4

2016 6

2015 3

2014 4

2013 1

2012 6

2011 10

2010 9

2009 12

2008 5

2007 5

2005 1

2004 1

展开 ︾

关键词

X射线阻射性 1

三流体喷嘴喷雾干燥技术 1

三相界面 1

三维k-ε紊流数学模型 1

井壁稳定 1

井壁质量 1

仿刺参 1

仿生学 1

优快钻井 1

传热强化 1

体腔液 1

保护油气层 1

储层保护 1

动、静叶相互作用 1

动力气垫 1

动力特性 1

单孔电极模型 1

压力驱动 1

可压缩流 1

展开 ︾

检索范围:

排序: 展示方式:

Uncoupled state space solution to layered poroelastic medium with anisotropic permeability and compressiblepore fluid

Zhiyong AI, Wenze ZENG, Yichong CHENG, Chao WU

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 171-179 doi: 10.1007/s11709-011-0103-0

摘要: This paper presents an uncoupled state space solution to three-dimensional consolidation of layered poroelastic medium with anisotropic permeability and compressible pore fluid. Starting from the basic equations of poroelastic medium, and introducing intermediate variables, the state space equation usually comprising eight coupled state vectors is uncoupled into two sets of equations of six and two state vectors in the Laplace-Fourier transform domain. Combined with the continuity conditions between adjacent layers and boundary conditions, the uncoupled state space solution of a layered poroelastic medium is obtained by using the transfer matrix method. Numerical results show that the anisotropy of permeability and the compressibility of pore fluid have remarkable influence on the consolidation behavior of poroelastic medium.

关键词: uncoupled state space solution     layered poroelastic medium     three-dimensional consolidation     anisotropic permeability     compressible pore fluid    

Stability of an annular viscous liquid jet in compressible gases with different properties inside and

Chunji YAN, Maozhao XIE,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 198-204 doi: 10.1007/s11708-009-0054-5

摘要: A spatial linear instability analysis is conducted on an annular viscous liquid jet injected into compressible gases and a three-dimensional model of the jet is developed. The model takes into account differences between the velocities, densities of the gases inside and outside of the liquid jet. Theoretical analysis reveals that there exist 9 dimensionless parameters controlling the instability of the liquid jet. Numerical computations reveal some basic characteristics in the breakup and atomization process of the liquid jet as well as influences of these relevant parameters. Major observations and findings of this study are as follows. The Mach number plays a destabilizing role and the inner Mach number has a greater effect on the jet instability than the outer Mach number. The Reynolds number always tends to promote the instabilities of the liquid jet, but its influence is very limited. The Weber number and the gas-to-liquid density ratio also have unstable effects and can improve the atomization of liquid jets. Furthermore, the effects of the Weber number and gas-to-liquid density ratio on the maximum growth rates of axisymmetric and non-axisymmetric disturbances and corresponding dominant wave numbers are manifested in a linear way, while that of the Mach number is non-linear. The effect of Reynolds on the maximum growth rates is non-linear, but the dominant wavenumber is almost not affected by the Reynolds number.

关键词: liquid jet     dominant wave number     compressibility     instability    

Analyzing the characterization of pore structures and permeability of diesel contaminated clays under

《结构与土木工程前沿(英文)》   页码 1264-1280 doi: 10.1007/s11709-023-0921-x

摘要: In this study, mercury intrusion porosimetry (MIP) and X-ray micro-computed tomography (XRμCT) were used to characterize the pore structures and investigate the permeability characteristics of clay after aging and contamination with diesel. The results of the MIP tests showed that aging leads to reductions in porosity and average diameter, as well as an increase in tortuosity. The XRμCT analysis yielded consistent results; it showed that aging renders pores more spherical and isotropic and pore surfaces smoother. This weakens the pore connectivity. Micromorphological analysis revealed that aging led to the rearrangement of soil particles, tighter interparticle overlapping, and a reduction in pore space. The combination of MIP and XRμCT provided a comprehensive and reliable characterization of the soil pore structure. An increased diesel content increased the porosity and average diameter and reduced the tortuosity of the pores. Mechanistic analysis showed that aging weakens interparticle cohesion; this causes large agglomerates to break down into smaller agglomerates, resulting in a tighter arrangement and a subsequent reduction in porosity. An increase in diesel content increases the number of large agglomerates and pore spaces between agglomerates, resulting in increased porosity. Both aging and diesel content can weaken the permeation characteristics of soil.

关键词: MIP     XRμCT     aging     diesel content     pore structure     permeability characteristics    

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 897-908 doi: 10.1007/s11705-021-2127-x

摘要: Catalyst particle shapes and pore structure engineering are crucial for alleviating internal diffusion limitations in the hydrodesulfurization (HDS)/hydrodenitrogenation (HDN) of gas oil. The effects of catalyst particle shapes (sphere, cylinder, trilobe, and tetralobe) and pore structures (pore diameter and porosity) on HDS/HDN performance at the particle scale are investigated via mathematical modeling. The relationship between particle shape and effectiveness factor is first established, and the specific surface areas of different catalyst particles show a positive correlation with the average HDS/HDN reaction rates. The catalyst particle shapes primarily alter the average HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. An optimal average HDS/HDN reaction rate exists as the catalyst pore diameter and porosity increase, and this optimum value indicates a tradeoff between diffusion and reaction. In contrast to catalyst particle shapes, the catalyst pore diameter and the porosity of catalyst particles primarily alter the surface HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. This study provides insights into the engineering of catalyst particle shapes and pore structures for improving HDS/HDN catalyst particle efficiency.

关键词: hydrodesulfurization     hydrodenitrogenation     particle shape     pore structure    

Assessment of an alternative to deep foundations in compressible clays: the structural cell foundation

Sergio A. MARTÍNEZ-GALVÁN, Miguel P. ROMO

《结构与土木工程前沿(英文)》 2018年 第12卷 第1期   页码 67-80 doi: 10.1007/s11709-017-0399-5

摘要: The new type of deep foundation for buildings on saturated, compressible-low strength clayey soil deposits, branded structural cell essentially consists of a rigid concrete top slab, structurally connected to reinforced concrete peripheral walls (diaphragms) that enclose the natural soil. Accordingly, as the initial volume of the confined soft clays within the lateral stiff diaphragms will remain constant upon loading, the hollowed structural cell will be “transformed” into a very large cross-section pillar of unit weight slightly higher than that of the natural soft clayey soil. This type of foundation seems to be a highly competitive alternative to the friction pile-box foundations (widely used in Mexico City clays), due to its economic and environmental advantages. Economies result, for example, from the absence of huge excavations hence sparing the need of earth retaining structures. Further savings result from appreciably smaller concrete volumes required for building the structural cell than the friction pile-box foundation; moreover, the construction time of the former is much shorter than that of the latter. Regarding the impact to the environment, less air contamination follows from the fact that both traffic jams and soil excavation lessen appreciably. Considering these facts and others regarding scheduling, it was decided to replace 48-friction pile-box foundations specified in the master plan project by this new type of foundation. The overall behavior of these cell foundations over a five-year period is fared from close visual observations and their leveling during the first three years after their construction.

关键词: deep foundations     bearing capacity     resistant moment     structural cell     3D numerical modeling    

Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1419-1

摘要:

• Pore structure affects biologically activated carbon performance.

关键词: Granular activated carbon     Biologically activated carbon filter     Bacterial community structure     Pore structure    

Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells

Ahmed Mohmed DAFALLA, Fangming JIANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 460-472 doi: 10.1007/s11708-021-0733-4

摘要: Water transport is of paramount importance to the cold start of proton exchange membrane fuel cells (PEMFCs). Analysis of water transport in cathode catalyst layer (CCL) during cold start reveals the distinct characteristics from the normal temperature operation. This work studies the effect of CCL mesoscopic pore-morphology on PEMFC cold start. The CCL mesoscale morphology is characterized by two tortuosity factors of the ionomer network and pore structure, respectively. The simulation results demonstrate that the mesoscale morphology of CCL has a significant influence on the performance of PEMFC cold start. It was found that cold-starting of a cell with a CCL of less tortuous mesoscale morphology can succeed, whereas starting up a cell with a CCL of more tortuous mesoscale morphology may fail. The CCL of less tortuous pore structure reduces the water back diffusion resistance from the CCL to proton exchange membrane (PEM), thus enhancing the water storage in PEM, while reducing the tortuosity in ionomer network of CCL is found to enhance the water transport in and the water removal from CCL. For the sake of better cold start performance, novel preparation methods, which can create catalyst layers of larger size primary pores and less tortuous pore structure and ionomer network, are desirable.

关键词: cold start     energy conversion     fuel cells     mesoscale morphology     tortuosity     water management    

Review of the LNG intermediate fluid vaporizer and its heat transfer characteristics

《能源前沿(英文)》 2022年 第16卷 第3期   页码 429-444 doi: 10.1007/s11708-021-0747-y

摘要: The intermediate fluid vaporizer (IFV), different from other liquefied natural gas (LNG) vaporizers, has many advantages and has shown a great potential for future applications. In this present paper, studies of IFV and its heat transfer characteristics in the LNG vaporization unit E2 are systematically reviewed. The research methods involved include theoretical analysis, experimental investigation, numerical simulation, and process simulation. First, relevant studies on the overall calculation and system design of IFV are summarized, including the structural innovation design, the thermal calculation model, and the selection of different intermediate fluids. Moreover, studies on the fluid flow and heat transfer behaviors of the supercritical LNG inside the tubes and the condensation heat transfer of the intermediate fluid outside the tubes are summarized. In the thermal calculations of the IFV, the selections of the existing heat transfer correlations about the intermediate fluids are inconsistent in different studies, and there lacks the accuracy evaluation of those correlations or comparison with experimental data. Furthermore, corresponding experiments or numerical simulations on the cryogenic condensation heat transfer outside the tubes in the IFV need to be further improved, compared to those in the refrigeration and air-conditioning temperature range. Therefore, suggestions for further studies of IFV are provided as well.

关键词: intermediate fluid vaporizer     design of structure and intermediate fluid     condensation heat transfer    

Review of fluid and control technology of hydraulic wind turbines

Maolin CAI, Yixuan WANG, Zongxia JIAO, Yan SHI

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 312-320 doi: 10.1007/s11465-017-0433-2

摘要:

This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

关键词: wind turbine     hydraulic system     fluid model     control technology    

用可压缩流涡方法模拟叶轮机动静叶的相互作用

陈矛章,彭波

《中国工程科学》 2000年 第2卷 第2期   页码 15-23

摘要:

本课题组发展了一种扰动涡方法,用以研究叶轮机内动、静叶相互作用[1,2]。其优点是物理图画清楚,计算收敛快。它采用了一个重要假设:扰动胀量为零,从而大大简化 了计算过程。文章的目的是研究此假设的影响,并取消此假设,使扰动涡方法建立在完全严格的数学基础上。由于取消了“扰动胀量为零的假设,需要耦合求解扰动质量方程、扰动涡量输运方程和扰动能量输运方程。这是文章与文献[1,2]的主要区别。

文献[1,2]对NASA67压气机第一级内由于动、静叶间的相互作用引起的非定常流动过程作了数值模拟,并与试验结果作了对比。文章也作了同样的算例,以研究扰动胀量为零的影响。数值模拟结果表明,在引入了扰动胀量后,用扰动涡方法模拟动静干涉仍保持较好的收敛性和收敛速度,且与试验的符合程度更好。文章强调指出,即使对于非定常可压流,为满足无渗透边界条件所需的运动分量也是用椭圆类的拉普拉斯方程描述,而不是用双曲类的方程描述。“扰动胀童为零”不能等同于扰动运动为不可压。

关键词: 叶轮机     动、静叶相互作用     扰动涡方法     非定常流     可压缩流    

Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive

Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 412-424 doi: 10.1007/s11709-017-0432-8

摘要:

The subject of present study is the application of mesh free Lagrangian two-dimensional non-cohesive sediment transport model applied to a two-phase flow over an initially trapezoidal-shaped sediment embankment. The governing equations of the present model are the Navier-Stocks equations solved using Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method. To simulate the movement of sediment particles, the model considers a powerful two-part technique; when the sediment phase has rigid behavior, only the force term due to shear stress in the Navier-Stokes equations is used for simulation of sediment particles’ movement. Otherwise, all the Navier-Stokes force terms are used for transport simulation of sediment particles. In the present model, the interactions between different phases are calculated automatically, even with considerable difference between the density and viscosity of phases. Validation of the model is performed using simulation of available laboratory experiments, and the comparison between computational results and experimental data shows that the model generally predicts well the flow propagation over movable beds, the induced sediment transport and bed changes, and temporal evolution of embankment breaching.

关键词: WCSPH method     non-cohesive sediment transport     rheological model     two-part technique     two-phase dam break    

Computational fluid dynamics simulation of aerosol transport and deposition

Yingjie TANG, Bing GUO

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 362-377 doi: 10.1007/s11783-011-0365-8

摘要: In this article computational fluid dynamics (CFD) simulation of aerosol transport and deposition, i.e. the transport and deposition of particles in an aerosol, is reviewed. The review gives a brief account of the basics of aerosol mechanics, followed by a description of the general CFD approach for flow field simulation, turbulence modeling, wall treatments and simulation of particle motion and deposition. Then examples from the literature are presented, including CFD simulation of particle deposition in human respiratory tract and particle deposition in aerosol devices. CFD simulation of particle transport and deposition may provide information that is difficult to obtain through physical experiments, and it may help reduce the number of experiments needed for device design. Due to the difficulty of describing turbulent flow and particle-eddy interaction, turbulent dispersion of particles remains one of the greatest challenges for CFD simulation. However, it is possible to take a balanced approach toward quantitative description of aerosol dispersion using CFD simulation in conjunction with empirical relations.

关键词: computational fluid dynamics (CFD)     aerosol     transport     deposition    

Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1149-1163 doi: 10.1007/s11705-021-2096-0

摘要: The production of solar fuels via the photoreduction of carbon dioxide to methane by titanium oxide is a promising process to control greenhouse gas emissions and provide alternative renewable fuels. Although several reaction mechanisms have been proposed, the detailed steps are still ambiguous, and the limiting factors are not well defined. To improve our understanding of the mechanisms of carbon dioxide photoreduction, a multiphysics model was developed using COMSOL. The novelty of this work is the computational fluid dynamic model combined with the novel carbon dioxide photoreduction intrinsic reaction kinetic model, which was built based on three-steps, namely gas adsorption, surface reactions and desorption, while the ultraviolet light intensity distribution was simulated by the Gaussian distribution model and Beer-Lambert model. The carbon dioxide photoreduction process conducted in a laboratory-scale reactor under different carbon dioxide and water moisture partial pressures was then modeled based on the intrinsic kinetic model. It was found that the simulation results for methane, carbon monoxide and hydrogen yield match the experiments in the concentration range of 10−4 mol·m–3 at the low carbon dioxide and water moisture partial pressure. Finally, the factors of adsorption site concentration, adsorption equilibrium constant, ultraviolet light intensity and temperature were evaluated.

关键词: carbon dioxide photoreduction     computational fluid dynamic simulation     kinetic model     Langmuir adsorption    

polybenzoxazine-based carbon microspheres with nitrogen functionalities: Effects of mixed solvents on pore

Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1072-1086 doi: 10.1007/s11705-019-1899-8

摘要: In this study, polybenzoxazine (PBZ)-based carbon microspheres were prepared via a facile method using a mixture of formaldehyde (F) and dimethylformamide (DMF) as the solvent. The PBZ microspheres were successfully obtained at the F/DMF weight ratios of 0.4 and 0.6. These microspheres exhibited high nitrogen contents after carbonization. The microstructures of all the samples showed an amorphous phase and a partial graphitic phase. The porous carbon with the F/DMF ratio of 0.4 showed significantly higher specific capacitance (275.1 F g ) than the reference carbon (198.9 F g ) at 0.05 A g . This can be attributed to the synergistic electrical double-layer capacitor and pseudo-capacitor behaviors of the porous carbon with the F/DMF ratio of 0.4. The presence of nitrogen/oxygen functionalities induced pseudo-capacitance in the microspheres, and hence increased their total specific capacitance. After activation with CO , the specific surface area of the carbon microspheres with the F/DMF ratio of 0.4 increased from 349 to 859 m g and the specific capacitance increased to 424.7 F g . This value is approximately two times higher than that of the reference carbon. The results indicated that the F/DMF ratio of 0.4 was suitable for preparing carbon microspheres with good supercapacitive performance. The nitrogen/oxygen functionalities and high specific surface area of the microspheres were responsible for their high capacitance.

关键词: PBZ     carbon     porous materials     microsphere     supercapacitor    

Applications of atomic force microscopy in immunology

Jiping Li, Yuying Liu, Yidong Yuan, Bo Huang

《医学前沿(英文)》 2021年 第15卷 第1期   页码 43-52 doi: 10.1007/s11684-020-0769-6

摘要: Cellular mechanics, a major regulating factor of cellular architecture and biological functions, responds to intrinsic stresses and extrinsic forces exerted by other cells and the extracellular matrix in the microenvironment. Cellular mechanics also acts as a fundamental mediator in complicated immune responses, such as cell migration, immune cell activation, and pathogen clearance. The principle of atomic force microscopy (AFM) and its three running modes are introduced for the mechanical characterization of living cells. The peak force tapping mode provides the most delicate and desirable virtues to collect high-resolution images of morphology and force curves. For a concrete description of AFM capabilities, three AFM applications are discussed. These applications include the dynamic progress of a neutrophil-extracellular-trap release by neutrophils, the immunological functions of macrophages, and the membrane pore formation mediated by perforin, streptolysin O, gasdermin D, or membrane attack complex.

关键词: cellular mechanics     atomic force microscopy     neutrophil extracellular trap     macrophage phagocytosis     pore formation    

标题 作者 时间 类型 操作

Uncoupled state space solution to layered poroelastic medium with anisotropic permeability and compressiblepore fluid

Zhiyong AI, Wenze ZENG, Yichong CHENG, Chao WU

期刊论文

Stability of an annular viscous liquid jet in compressible gases with different properties inside and

Chunji YAN, Maozhao XIE,

期刊论文

Analyzing the characterization of pore structures and permeability of diesel contaminated clays under

期刊论文

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

期刊论文

Assessment of an alternative to deep foundations in compressible clays: the structural cell foundation

Sergio A. MARTÍNEZ-GALVÁN, Miguel P. ROMO

期刊论文

Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics

期刊论文

Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells

Ahmed Mohmed DAFALLA, Fangming JIANG

期刊论文

Review of the LNG intermediate fluid vaporizer and its heat transfer characteristics

期刊论文

Review of fluid and control technology of hydraulic wind turbines

Maolin CAI, Yixuan WANG, Zongxia JIAO, Yan SHI

期刊论文

用可压缩流涡方法模拟叶轮机动静叶的相互作用

陈矛章,彭波

期刊论文

Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive

Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH

期刊论文

Computational fluid dynamics simulation of aerosol transport and deposition

Yingjie TANG, Bing GUO

期刊论文

Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid

期刊论文

polybenzoxazine-based carbon microspheres with nitrogen functionalities: Effects of mixed solvents on pore

Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan

期刊论文

Applications of atomic force microscopy in immunology

Jiping Li, Yuying Liu, Yidong Yuan, Bo Huang

期刊论文